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Abstract

In this article we present some weaknesses in the RC4 cipher and their
cryptographic applications. Especially we improve the attack described
in [2] in such a way, that it will work, if the weak keys described in that
paper are avoided. A further attack will work even if the first 256 Byte
of the output remain unused. Finally we show that variants of the RC4
algorithm like NGG and RC4A are also vulnerable by these techniques.
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1 Introduction

RC4 is probably the most popular stream cipher that do not base on a feedback
shift register. It was developed in 1987 by Ron Rivest, but the algorithm was
kept secret until 1994. The first publication of the algorithm was an anony-
mous posting at the mailing list cipherpunks. After this publication several
weaknesses were discovered in the pseudo random sequence generated by RC4.

The so far most successful attack on RC4 was presented by S. Fluhrer,
I. Mantin and A. Shamir [2] (FMS-Attack) and uses a weakness in the key
scheduling phase. The main idea is that RC4 is commonly used with keys of
the form

session key = initialization vector‖main key .

If the initialization vectors are suitable chosen the first byte of the pseudo ran-
dom sequence is with high probability (≈ 1

e ) identical to a predefined byte of
the main key.

In this paper we want to present a new attack on RC4. The work is organized
as follows:

In section 2 we describe the RC4 algorithm and give an brief overview over
previous analysis.

Then (section 3) we prove a correlation between the public known output
and the internal state. This previously unknown weakness will be the basis for
our attacks.

Our first attack (section 4) will examine the first bytes of the pseudo random
sequence, like the FMS-Attack, but requires no special from of the initialization
vector. If the attacker can not manipulate the initialization vector directly he is
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forced by the FMS-Attack to wait until a suitable number of weak initialization
vectors occurred by chance. Approximately this will take between 1, 000, 000
and 4, 000, 000 sessions. The new attack will need only 25, 000 sessions.

The second attack (section 5) uses, like the FMS-Attack, chosen initialization
vectors. The difference is, that it does not need the first byte of the pseudo
random sequence. It is still successful if the first 256 bytes of the RC4 pseudo
random sequence are not observable. This is practically important, since many
authors (see for example [8]) suggest not to use the first bytes of the RC4 pseudo
random sequence to avoid known vulnerabilities.

In the section 6 we describe an extension of our attacks that reduces the
number of needed session but increases the computation time. We will also
discuss how the known ciphertext attacks from the previous sections can be
transformed into a cipher text only attacks.

Finally (section 7) we look at variants of the RC4 algorithm and discuss how
to adapt the attacks to such variants.

2 The RC4 Algorithm

In this part we will describe the RC4 algorithm and give an overview over
previous works.

2.1 Description of RC4

RC4 consists of two parts. The key scheduling phase will generate the initial
permutation from a (random) key of length l bytes. Typically l will be in the
range between 5 and 64. The maximal key length is l = 256. The main part of
the algorithm is a pseudo random generator that produces one byte output in
each step. The encryption will be an XOR of the pseudo random sequence with
the message, as usual for stream ciphers.

For the analysis of RC4 it is convenient to replace the original algorithm
that works on bytes (Z/256Z) by a generalization that works on Z/nZ for some
n ∈ N. For n = 256 we obtain the original algorithm.

Algorithm 1 RC4 key scheduling

1: {initialization}
2: for i from 0 to n − 1 do

3: S[i] := i
4: end for

5: j := 0
6: {generate a random permutation}
7: for i from 0 to n − 1 do

8: j := (j + S[i] + K[i mod l]) mod n
9: Swap S[i] and S[j]

10: end for
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Algorithm 2 RC4 pseudo random generator

1: {initialization}
2: i := 0
3: j := 0
4: {generate pseudo random sequence}
5: loop

6: i := (i + 1) mod n
7: j := (j + S[i]) mod n
8: Swap S[i] and S[j]
9: k := (S[i] + S[j]) mod n

10: print S[k]
11: end loop

We will call n successive outputs of the RC4 pseudo random generator a
round, i.e. the first round will produce the output bytes 1 to n, the second
round the bytes n + 1 to 2n and so on. If an attack only uses bytes from the
i-th round or later we will call it an i-th round attack. All previously known
attacks were 1-round attacks. In this paper we will present the first practical
2-round attack.

2.2 Correlations in the RC4 pseudo random generator

It is known that the RC4 pseudo random sequence differs in some aspects from
a true random sequence.

The first published difference is due to J.Dj. Golić [4, 5]. He proves that the
sum of the last bits at time step t and t + 2 is correlated to 1. The correlation
coefficient is ≈ 15 ·2−24. He concludes that 240 bytes of the RC4 pseudo random
sequence are distinguishable from a true random sequence.

S.R. Fluhrer and D.A. McGrew [3] investigate the joint probability of two
consecutive output bytes. They prove that the joint distribution of two succes-
sive bytes differers significantly from the uniform distribution. For example they
prove that for i 6= 1, n−1 the probability of the digraph (0, 0) is ≈ n−2(1+n−1)
instead of n−2. From this differences they conclude that even 230 bytes of the
RC4 pseudo random sequence are sufficient to distinguish it from a true pseudo
random sequence. The most recent continuation of their work is due to I. Mantin
[6], who lowers this bound to ≈ 226 bytes.

2.3 Weaknesses in the key scheduling phase

The key scheduling phase of RC4 has also known weaknesses. In the ideal case
that the key consists of n independent, identically and uniformly distributed
elements of Z/nZ the key scheduling phase can produce nn results all of equal
probability. But n! is not a divisor of nn and therefore the distribution of the
initial permutation must differ from the uniform distribution. A detailed study
of this differences is due to I. Mironov [8]. He shows among other things, that
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the identity is the most likely initial permutation and the cycle (1, 2, . . . , n−1, 0)
is the most unlikely initial permutation. Mironov suggest not to use the first
12·256 bytes of the RC4 pseudo random sequence to avoid a possible exploitation
of this weakness. As a minimal precautionary measure he suggests not to use
the first 2 · 256 to 3 · 256 Bytes of the RC4 pseudo random sequence.

A weakness detected early was that the first byte of the pseudo random
sequence is not very random (see [9] and [7]). The strongest know attack of this
kind is due to S. Fluhrer, I. Mantin and A. Shamir [2]. Their attack assumes,
that the initialization vector precedes the main key and that the two first bytes
are of the form (b, n − 1), where b is the byte of the main key that shall be
reconstructed. If an attacker is not able to manipulate the initialization vector
(which is the regular case) he has to wait until the initialization vector takes
the desired form by chance, i.e. he can use approximately only 1 out of n2

sessions. The authors show that their attack can be applied successfully against
the WEP-Protocol. The weakness can be used even in situations in which the
initialization vector follows the main key, but it is more complicated in this
situation.

3 A new correlation in the RC4 pseudo random

generator

In this section we prove a strong correlation between the observable values i,
S[k] and the internal states j, S[j] and S[i]. This correlation will be the base
for our attacks.

In this section we look only on the steps 9 and 10 (computation of k and
output of S[k]) of the RC4 pseudo random generator (Algorithm 2).

Theorem 1

Assume that the internal states are uniformly distributed. Then for a fixed

public pointer i we have:

P (S[j] + S[k] ≡ i mod n) =
2

n
(1)

P (S[j] + S[k] ≡ i mod n | S[j] = x) =
2

n
for all x ∈ {0, . . . , n − 1} (2)

For c 6≡ i mod n we have:

P (S[j] + S[k] ≡ c mod n) =
n − 2

n(n − 1)
(3)

P (S[j] + S[k] ≡ c mod n | S[j] = x) =
n − 2

n(n − 1)
for all x ∈ {0, . . . , n − 1}

(4)

Proof

First note that (1) follows from (2) and (3) follows from (4).
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To prove (2) we count all internal states with S[j] + S[k] ≡ i mod n and
S[j] = x. First we use k ≡ S[j] + S[i] mod n (line 9 of Algorithm 2) to write
S[j] + S[k] ≡ i mod n as k + S[k] ≡ i + S[i] mod n.

We have to distinguish two cases

1. i = k.
Then S[i] = S[k] and the equivalence is satisfied trivially. In this case
S[i] = S[k] ≡ i − S[j] ≡ i − x mod n and there are (n − 1)! possibilities
to choose the remaining n − 1 entries of the S-box.

2. i 6= k.
Then we have to set S[k] ≡ i − x mod n and S[i] = k + S[k] − i mod n.
We may still choose k (n− 1 possibilities) and the remaining n− 2 entries
of the S-box ((n − 2)! possibilities).

Hence there are all together (n−1)!+(n−1)(n−2)! = 2(n−1)! possibilities
in which we have S[j]+S[k] ≡ i mod n and S[j] = x but there exists n! possible
internal states where S[j] = x which proves (2).

The prove of (4) is quite similar.
Here we have to distinguish three cases:

1. i = k.
In this case S[i] = S[k] and k+S[k] ≡ c+S[i] mod n can not be satisfied,
since c 6= i = k.

2. c = k.
In this case k + S[k] ≡ c + S[i] mod n implies S[k] ≡ S[i] mod n. But
this is impossible, since k 6= i and therefore S[i] 6= S[k].

3. i 6= k and c 6= k
In this case we have to set S[k] ≡ i − x mod n and S[i] = k + S[k] − c
mod n. We may still choose k (n−2 possibilities) and the remaining n−2
entries of the S-box ((n − 2)! possibilities).

Therefore only the third case yields a contribution to the number of possible
internal states. Thus

P (S[j] + S[k] ≡ c mod n | S[j] = x) =
(n − 2)(n − 2)!

n!
=

n − 2

n(n − 1)
.

This proves the theorem. �

Of course we know that in a regular RC4 instantisation the internal states
are not uniformly distributed, but the difference between the real distribution
and the uniform distribution is only small, in other words, Theorem 1 is a good
approximation.
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4 Attack in the first round

Now we want to apply Theorem 1 in an 1-round attack. First we describe the
basic version of the attack where the session keys have the form

main key‖initialization vector

and the attack determines the sum of the first two key bytes. Afterwards we
will show how to modify the attack to recover other key bytes or how to deal
with a initialization vector preceding the main key.

4.1 The basic version of the attack

We investigate the first two steps of the key scheduling phase. In the first step
j takes the value K[0] and S[0] is swapped with S[K[0]]. In the second step j
is increased by S[1] + K[1] and the entry of S[j] is move to S[1].

Since we start with S[j] = j for all j, we deduce that after the second step
of the key schedule the value of S[1] is t = K[0]+K[1]+ 1, except the following
cases:

(a) K[0] = 1, K[1] = 0. In this case we have t = 0.

(b) K[0] = 1, K[1] 6= 0, n− 1. In this case we have t = K[0]+K[1], since in the
first step S[1] is set to 0 and in the second step j is increased only by K[1].

(c) K[0] 6= 1, K[1] = n− 1. In this case j is not changed in the second step and
thus S[1] gets the value t = 0.

(d) K[0] 6= 1 and K[0] + K[1] = n− 1. In this cases j = 0 after the second step
and therefore S[1] gets the value t = K[1] (which is the value of S[0] after
the first step.)

The many special cases may look confusing, but the only thing we need to
know is the following: For fixed K[0] the value t of S[1] after the second step is
an easily computable function of K[1].

In the remaining steps of the key scheduling phase S[1] will never be changed
except if j takes the value 1. The probability that this happens in one step is
1− 1

n . If the session key has length n and if all key bytes are independent, we may
conclude that S[1] will not be changed after the second step with probability
(1− 1

n )n−2 ≈ 1
e . Of course, for shorter keys the independence assumption is false,

this lead to some minor problems. We address these issue later in subsection
4.3. How ever, we may take 1

e as a good approximation for the probability that
S[1] is not changed after the second step of the key scheduling phase.

At this point we have achieved the following: We know that the value of
S[1] at the start of the RC4 pseudo random generator will be t, which depends
only on K[0] and K[1], with a high probability (≈ 1

e ).
Now we want to use the correlation proven in Theorem 1 to obtain t from

observation of the RC4 pseudo random sequence. To that goal we look at the
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generation of the first pseudo random byte. First i is set to 1, and than S[1]
and S[j] are swapped. Now S[j] contains the interesting value t. Furthermore
we can observe the output S[k] of the RC4 pseudo random generator. But by
Theorem 1 we know that S[j] ≡ 1 − S[k] mod n with probability 2

n .
All together we have

P (t ≡ 1 − S[k] mod n) ≈
1

e
·

2

n
+ (1 −

1

e
) ·

n − 2

n(n − 1)
≈

1.36

n
. (5)

(The second summand express the probability that S[1] 6= t at the end of the
key scheduling phase, but t ≡ 1 − S[k] mod n anyway.)

Our attack against RC4 takes to following form:
For a number of different initialization vectors we observe the first byte xi

of the RC4 pseudo random generator and compute ti = 1 − xi. The fraction of
the ti that have the correct value t is about 1.36

n . All other values will have a
relative frequency less than 1

n . If the number of sessions is large enough we can
be sure that the right value is the most frequent value.

We use methods from information theory to obtain a bound for the number of
necessary sessions. Without any observation the uncertainty about t is log2(n).
The redundancy of a distribution in which one value has probability p = 1.36

n

and the remaining n − 1 values have probability q = 1−p
n−1 is

r = log2(n) + p log2(p) + (n − 1)q log2(q) .

In each step the amount of obtained information is approximately r, thus we
need about log2(n)/r steps to obtain enough information to estimate r. Simpli-
fying this formula (with a computer algebra system) we find that ≈ 17n ln(n)
sessions are sufficient to reconstruct t. (For n = 256 this are only 25, 000 ses-
sions, where, in comparison, the FMS-attack needs approximately 1, 000, 000
sessions.) Experiments with different values of n indicate that the heuristic
bound described above is a very accurate estimator for the number of necessary
sessions.

If one wants a better statistical argument with prescribed error probabilities
we have to use a sequential test. (See for example [11] for a introduction to
sequential tests.) In our case we can do the following:

We suppose that all possible values of t have the same a priori probability
(Bayes method). This is always the case if the key is uniformly distributed. The
Bayes method is therefore very natural for our problem, in contrast to many
other statistical problems. The a posterior probabilities can be computed from
the absolute frequencies fi (number of sessions where t = i) by the following
formula:

Pi = P (t = i | the absolute frequencies are fi) =

∏n
j=1 p

fj

i,j
∑n

k=1

∏n
j=1 p

fj

k,j

(6)

(Here we denote by pi,j = p = 1.36
n for i = j and pi,j = q = 1−p

n−1 for i 6= j.)
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If there exists an i such that Pi ≥ 1 − α for a prescribed error probability
α, we stop and decide that t = i. Otherwise we observe a new session and
repeat the test. This test guarantees an error probability less that α and uses
a minimal number of sessions.

Since in cryptography we can check the reconstructed key simply by testing
it, I think precise error bounds are not necessary and the sequential test is not
worth the additional effort, but the method with the a posterior probabilities
allows us to make a tradeoff between the computational effort of the attack and
the number of observed sessions (see section 6.1).

4.2 Attack on other key bytes

So far we can only reconstruct the first two key bytes (K[0] has to be guessed
and K[1] is found by the test). Now we want to reconstruct K[2]. We note
that in the third step of the key scheduling phase S[2] is set to the value t =
f(K[0], K[1], K[2]). The function f is efficiently computable and for fixed t,
K[0] and K[1] there exists a unique K[2] with t = f(K[0], K[1], K[2]). With
probability ≈ 1

e the value of S[2] is not changed in the remaining n− 3 steps of
the key scheduling phase and in the first step of the pseudo random generator.
In the second step of the pseudo random generator S[2] is swapped with S[j],
i.e. S[j] is set to t. Now we apply Theorem 1 to estimate t from the second
output byte generated by the RC4 pseudo random generator. From t we can
compute K[2].

The test needed for this has the same complexity as the test described in
the previous subsection. Thus we may use the same 17n ln(n) sessions.

The key bytes K[3], K[4] and so on can be obtained by the same way ob-
serving the third, forth and so on byte of the RC4 pseudo random sequence.
The effort needed to break the RC4 algorithm is therefore reduced from O(nk)
(brute force testing of all possible keys) to O((k− 1)n ln(n)) (guess the first key
byte and apply the test (afford O(n ln(n))) to obtain the remaining k − 1 key
bytes).

4.3 Implementation problems

In subsection 4.1 we have estimated that the probability that S[1] is not changed
after the first step of the key scheduling is approximately 1

e . This is correct if
the session key consists of n independent bytes. In a real attack scenario the
session key is shorter than n bytes, i.e. the probability 1

e is not quite correct.
In this subsection we want to discuss the problems that arises from this fact.

The problem is not that the session key is shorter than n and therefore the
different values of j during the key scheduling are not independent. If the length
session key is not a to small fraction of n (a session key of length 8 would be
enough for n = 256) the correlation between the different values of j is small
enough. 1

e is still a good approximation for the probability, that j does not take
the value 1.
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The problem is the following: Since the session key has the form main
key‖initialization vector, the first l steps of the key scheduling phase will be
the same in all sessions (l is the length of the main key). If we are unlucky,
during the first l steps the pointer j will be set to 1. Hence the assumption
S[1] = t = f(K0, K1) fails and the basic variant of our attack will fail to recon-
struct the key. Therefore we have to find a way to deal with such ugly main
keys.

Lets have a closer look at the attack. The tests described in the previous
subsections reconstruct the values S[1], S[2], . . . ,S[l − 1] of the S-box after the
first l steps of the key scheduling phase. (In the l +1 step of the key scheduling
phase we process the first byte of the initialization vector.) Our task is now to
reconstruct the main key from this information.

Since there are only n(n−1)·. . .·(n−l+2) possible values of (S[1], . . . , S[l−1])

but nl possible keys, we expect nl

n!/(n−l+1)! keys resulting in the same values S[1],

. . . , S[l − 1]. This means that for n = 265 and l = 16 we must do a search over
≈ 389 keys and for n = 256 and l = 32 we must search in a set of ≈ 1700 keys.
This effort is of course negligible.

We describe now how to find the set of admissible keys.
We start by guessing K[0]. Now we can simulate the first step of the key

scheduling phase. We call the values of S[1], . . . , S[l−1] after this first step the
old values, every other number we call a new value.

We call a swap between S[i] and S[j] with i, j ∈ {1, . . . , l− 1} a problematic
swap. A problematic swap is ugly if j < i. The equalities S[1] = f1(K[0], K[1]),
S[2] = f2(K[0], K[1], K[2]), . . . , S[l − 1] = f2(K[0], . . . , K[l − 1]) as described
in the previous subsection work only, if there are no ugly swaps occured during
the first l steps of the key scheduling phase. In this case we can compute the
key by guessing K[0] and inverting the known functions f1, . . . , fl. (For l = 16
and n = 256 the fraction of nice keys for which this works is about 0.62.)

If we know exactly which ugly swaps occurs we can adapt our reconstruction.
Thus we have to identify the ugly swaps. We do a little bit more – we identify
the problematic swaps.

Since a problematic swap does not change the set {S[1], . . . , S[l − 1]} it can
not replace an old value by a new one. We search the old values among the
know values of S[1], . . . , S[l − 1] after the lth step of the key scheduling phase.

The expected number of old values is (l−1)2

n . (For l = 16 and n = 265 this is
0.87 for l = 32 and n = 256 this is 3.75.) Each old value indicates a possible
problematic swap.

But the problematic steps must move the old values to their proper places.
From this information we can reconstruct the possible combinations of prob-
lematic steps.
Example: Let l = 5 and we guess K[0] = 0. The old values are 1, 2, 3 and
4. After the first 5 steps of the key scheduling phase we have S[1] = 10, S[2] =
4, S[3] = 5 and S[4] = 17. There is only one old value and therefore at most one
possible problematic swap. Since we start with S[4] = 4 the problematic swap
must swap S[2] and S[4] and it must occur either at time step i = 2 or i = 4.
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If the number of old values in S[1], . . . , S[l− 1] is small (and this is the case
for all realistic combinations of l and n), the number of possible problematic
swaps is also small.

We compute for each combination of problematic swaps the corresponding
key and test if that key is correct.

The computational effort of this algorithm is of course larger than the simple
inversion of S[1] = f1(K[0], K[1]), S[2] = f2(K[0], K[1], K[2]), . . . , S[l − 1] =
f2(K[0], . . . , K[l − 1]) but it is still feasible.

4.4 Initialization vector precedes the main key

Now suppose that the initialization vector precedes the main key. If b is the
length of the initialization vector, we know the bytes K[0], . . . , K[b − 1] of the
session key. An attacker is therefore able to compute the first b steps of the key
scheduling phase. He can therefore express the value t of S[b] after the (b+1)th
step as a function of the first unknown key byte K[b]. With probability 1

e this
value is not changed in the remaining steps of the key scheduling phase and the
first b − 1 steps of the pseudo random generator. We can use Theorem 1 to
estimate t and therefore K[b]. This case is even simpler than the case in which
the main key precedes the initialization vector since here we need not to guess
the first key byte. Furthermore, the initialization vector at the beginning adds
enough randomness to the system to avoid the problem discussed in subsection
4.3.

5 Attack in the second round

Our attack in the second round uses a concept of weak initialization vectors,
similar to the FMS-attack. But the FMS-attack must prescribe the first two
bytes, our attack needs only that the sum of the first two bytes have a prescribed
value. Thus we can use every nth session instead of every n2th session.

5.1 The basic variant of the attack

For the basic variant of the attack we assume that the initialization vector
precedes the main key. The first byte of the main key gets the number b.

We assume that in the first b steps of the key scheduling phase S[1] is set to
b. For random initialization vectors this will happen with probability 1

n . Since
the initialization vector is know to the attacker he can compute the first b steps
of the key scheduling phase and check if S[1] = b. We will only analyse sessions
that satisfies this assumption.

The next step of the key scheduling sets S[b] to a value f(K[b]). The attacker
knows the function f and he wants to find the unknown key value K[b]. In the
remaining steps of the key scheduling phase each of the values of S[1] = b and
S[k] = f(K[b]) will not be changed with a high probability of 1

e .
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The first step of the pseudo random generator will set j to S[1] = b and
interchange S[1] with S[j] = S[b] = f(K[b]). Thus we know that after the first
step of the pseudo random generator S[1] = f(K[b]) with probability 1

e2 . In the
next n − 1 step of the pseudo random generator the pointer j will be different
from 1 with probability ≈ 1

e , i.e. with at the beginning of the second round S[1]
will have the value f(K[b]) with probability ≈ 1

e3 .
Now we analyze the output of the first step of the second round. The pointer

i will be equal 1 and j has a value that is not known to us. After we have swapped
S[i] and S[j], we know that S[j] = f(K[b]) with probability 1

e3 . Theorem 1 says
that S[j] = 1−S[k] with probability 2

n . Similar to our 1-round attack we obtain

P (f(K[b]) = 1 − S[k]) ≈
1

e3
·

2

n
+ (1 −

1

e3
) ·

n − 2

n(n − 1)
≈

1.05

n
(7)

Difference from the uniform distribution is smaller than the one found for the
1-round attack but still significant.

The we obtain a estimator for f(K[b]) by observing S[k]. Inverting the
known function f we obtain K[b]. Since the success probability is smaller than
the one used for the 1-round attack we have to study more sessions (approxi-
mately 813n ln(n) session that satisfies S[1] = b).

After we have obtained K[b] we can tread it as part of the initialization
vector and apply the algorithm described above to obtain K[b+1], K[b+2] and
so on.

Since we can not choose the initialization vectors we have to wait long enough
to get the right number of initialization vectors (with S[1] = b, S[1] = b + 1,
etc) for our attacks. For random initialization vectors the estimated number of
needed session is therefore n(813n ln(n)).

We want now to discuss the case in which the initialization vector is not
random but generated by a counter.

5.1.1 Big endian counter

If the initialization vector is generated by a big endian counter the assumption
S[1] = b is satisfied in every nth session. Thus in this case we need n(813n ln(n))
sessions for a successful attack.

5.1.2 Little endian counter

If the initialization vector is generated by a little endian counter the things are
a bit different. If S[1] = b is satisfied once it will stay b for many sessions, but
it will take a long time until the assumption S[1] = b is satisfied the first time.

If the initialization is b bytes long and we want attack the first byte K[b] of
the main key, we have to wait until K[0]+K[1] = b−1 to obtain S[1] = b. This
happens first for K[0] = 0 and K[1] = b − 1. The counter value is at this time
(b−1)nb−2. Thus we have to wait such long before we can start our attack. For
typical values like n = 256 and b = 16 this will be unacceptable.

The following modification of the 2-round attack will help in this case:
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Instead of the investigation of initialization vectors that will result in S[1] =
f(K[b]) after the first step of the pseudo random generator, we will look at
initialization vectors that will result in S[j] = f(K[b]) after the jth step of the
pseudo random generator. This is possible but now we must assume that the
first j bytes of the S-box are not changed during the last n− j steps of the key
scheduling phase. The probability for this is (1− j

n )n−j ≈ 1
ej . This means that

the success probability will be smaller, i.e. we have to observe more sessions.
But if we choose j near at b we can use every nth session for the attack. We
certain values of b, j and n this can be faster than the basic variant of the
2-round attack.

5.2 Initialization vector follows the main key

If the initialization vector follows the main key the attack becomes more difficult.
The key length l should be small in comparison with n (like l = 16 and n = 256).
In the first l steps of the key scheduling phase j will be set to a value jl which
depends only from the main key. The permutation S will be similar to the
identity permutation.

If the key scheduling would start with i = l and j = jl (S initialized with the
identity), we would be able to apply the attack described in 5.1. Only minor
modifications are necessary for the new starting values of i and j.

We do not know that value jl, i.e. we have to guess it. Since after l steps
the permutation S differers form the identity we must further assume that the
difference do not matter, i.e. the success probability for the attack becomes
smaller.

6 Further Improvements

In this section we want to present two further enhancements of the attacks.

6.1 Reducing the number of sessions

In section 4 and 5 we assumed that we can observe enough sessions. In this
case the tests described in these sections can reconstruct the right key almost
certainly. But if we cannot observe a sufficient number of sesions, this is not
longer true. In that case we have to combine the results of the statistical analysis
with a search in the compleat key space.

For example we assume that we want to use the 1-round attack of section 4
to attack RC4 with a 128-Bit key. But instead of 25, 000 sessions we can observe
only 13, 000 sessions. Since the number of sessions is to small we can not longer
assume that the test will find the correct key bytes. Bur our estimation of the
information obtained per session suggest that the uncertainly about the key
should drop from 128 to about 64. This means that we should be able to find
the right key with only ≈ 264 operations. To do this we proceed as follows.
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The one 1-round attacks should find a value t from which can compute a
key byte. We observe the absolute frequencies

ti = number of sessions with suggest t = i .

The simple 1-round attack which analysis 25, 000 sessions, searches the maximal
value ti and assumes that t = i with very high probability. For less than 25, 000
session we can not assume that the right ti is the maximal with a high enough
probability. But we can compute the a posterior probabilities for t with equation
(6). But this time we stop before we have observed enough sessions to get an a
posterior probability ≥ 1 − α.

The a posterior probabilities for t implies a posterior probabilities for the
key K. This means that the entropy of the key becomes smaller. For 13, 000
sessions the a posterior entropy will be ≈ 64 instead of 128.

We now begin testing all 2128 possible keys, but we start with the keys with
the highest a posterior probability. If we do this, we may expected that we find
the right key after only 264 tests.

The tradeoff described above can applied to every attack described in this
article. Depending on the number of observed sessions the computational effort
of the attack varies between a full key search (and no observed session) and the
right key is found without search (number of session as given in section 4 and 5.

6.2 Cipher text only attacks

In all our previous analysis we have assumed that the attacker is able to observe
the pseudo random bytes generated by RC4, i.e. we assumed that the attacker
knows the enciphered plain text. Now we want to show how to convert our
known plain text attacks to cipher text only attacks.

Let have a look at the basic variant of the 1-round attack. We can not
obverse the first pseudo random byte x, but we can observe the encrypted
message c = m + x mod n.

The starting point for the 1-round attack was the observation

P (t ≡ 1 − x mod n) ≈
1

e
·

2

n
+ (1 −

1

e
) ·

n − 2

n(n − 1)
≈

1.36

n
.

Let now assume that the message m is equal m′ with probability 2
n and that all

other message have the same probability. Then we may conclude

P (t ≡ 1 − (c − m′) mod n) ≈
1

e
·

2

n
·

2

n
+

1

e
· (1 −

2

n
) ·

n − 2

n(n − 1)
+

(1 −
1

e
) ·

n − 2

n(n − 1)
·

2

n
+ (1 −

1

e
) · (1 −

n − 2

n(n − 1)
) ·

n − 2

n(n − 1)
≈

1

n
+

0.36

n2
.

The difference from 1
n is smaller but still significant.

We may use the estimation of the information obtained per step to estimate
the number of sessions needed in this scenario is about 15.4 ln(n)n3. (For n =
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256 this would be 130, 000, 000 session. But the redundancy of the message is
only ≈ 2 · 10−4. Many real messages have a redundancy of 0.5 or higher. For
such a message we would need a smaller number of sessions, i.e. we will succeed
with only 1, 000, 000 session in many cases.)

We see that, if we have less information about the encrypted message, we
need more cipher test for a successful attack. But even then the number of
needed sessions stays very small.

7 RC4 variants

In this section we want to discuss variants of the RC4 algorithm with respect
to attacks described in the preceding sections.

7.1 Modification of the key scheduling algorithm

It is notable that even small variants of the RC4 algorithm can improve it
strength against existing attacks.

If we change line 7 of the key scheduling algorithm (Algorithm 1) from
for i from 0 to n-1 do

to
for i from n-1 downto 0 do

we obtain a stronger algorithm.
Attacks that uses chosen initialization vectors (FMS-attack and our 2-round

attack) needs a manipulation of the first S-Box bytes, that enforces a certain
action in the first steps of the pseudo random generator. The change of the key
scheduling describe above, allow only manipulations that affects the last bytes
of the S-box. But such manipulations are useless for the FMS-attack and our
2-round attack.

Our 1-round attack can be still applied to the modified RC4 algorithm. But
this time we must require that S[n − 1] is not changed in the last step of the
key scheduling phase and in the first steps of the pseudo random generator.
The probability that this happens is only ≈ 1

e2 . This means that the success
probability of the attacks drops to

P =
1

e2

2

n
+ (1 −

1

e2
) ·

n − 2

n(n − 1)
≈

1.14

n
. (8)

With other words we need more sessions for a successful attack.
Further more we must investigate the (n−1)th pseudo random byte instead

of the first pseudo random byte. Since in most applications the first bytes
are highly regular (addresses, protocol information, etc.) it is easier to obtain
information about the first bytes.

7.2 Modification of the pseudo random generator

An other interesting observation is that S[k] is uncorrelated to S[i]. This leads to
a interesting modification of the RC4 pseudo random generator (Algorithm 2).
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We move line 8 behind line 10. For our 1-round attack this means, Theorem 1
can still be used to guess the value S[j]. But now S[j] is no longer a function
from K[0] and K[1] and it seems that we have no good method to find a relation
between S[j] and the key K. Even worse j varies between all sessions and we
do not know the value j. In other words this simple modification of the pseudo
random generator can block our attack. Other weaknesses of the RC4 algorithm
(like the FMS-attack, fortuitous states, correlation between different outputs)
are not affected by this modification. To my knowledge the only difference
between the original and modified variant of RC4 is that that modified variant
is stronger against attacks based on Theorem 1.

7.3 The NGG Generator

An interesting proposal for a generalization of the RC4 algorithm is due to
Y. Nawaz, K.C. Gupta and G. Gong [12]. They want do solve the following
problem:

If we want the RC4 algorithm to deal with 32 or 64 bit words instead of
bytes, the direct generalization would need a S-box with 232 or 264 entries,
respectively. This is not acceptable, because the large amount of memory need
for the S-box. The three authors suppose the following solution to that problem.

Fix two numbers n, m ∈ N with n|m (typical values are n = 256 and m = 232

or m = 264). The RC4(n,m) algorithm works on a S-box of n values in Z/mZ

and goes like this:

Algorithm 3 NGG key scheduling phase

1: {Initialization}
2: for i from 0 to n − 1 do

3: S[i] := ai {the values ai are fixed parameters}
4: end for

5: j := 0
6: {Generate a random S-box}
7: for i from 0 to n − 1 do

8: j := (j + S[i] + K[i mod l]) mod n
9: Swap S[i] and S[j]

10: S[i] := S[i] + S[j] mod m
11: end for

The difference to the RC4 algorithm lies mostly in the line 10 in Algorithm 3
and 11 in Algorithm 4, respectively. The S-Box contains no longer a permutation
of all values in Z/mZ but only a n-tuple of not necessary distinct values.

Since Theorem 1 uses only the lines 8 and 9 of the pseudo random generator,
we can read the output modulo n and get:

Theorem 2

Suppose all S[i] independent and are uniform distributed in Z/mZ. Then
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Algorithm 4 NGG pseudo random generator

1: {Initialization}
2: i := 0
3: j := 0
4: {generate pseudo random sequence}
5: loop

6: i := (i + 1) mod n
7: j := (j + S[i]) mod n
8: Swap S[i] and S[j]
9: k := (S[i] + S[j]) mod n

10: print S[k]
11: S[k] := S[i] + S[j] mod m
12: end loop

P (S[j] + S[k] ≡ i mod n) =
2

n
+ O(

1

n2
) (9)

P (S[j] + S[k] ≡ i mod n | S[j] ≡ x mod n) =
2

n
+ O(

1

n2
) for all x ∈ {0, . . . , n − 1}

(10)

For c 6≡ i mod n we have:

P (S[j] + S[k] ≡ c mod n) =
n − 2

n(n − 1)
+ O(

1

n2
) (11)

P (S[j] + S[k] ≡ c mod n | S[j] ≡ x mod n) =
n − 2

n(n − 1)
+ O(

1

n2
) for all x ∈ {0, . . . , n − 1}

(12)

Proof

The proof follows the idea of the proof of Theorem 1. The only problem is, that
for a given S-box S and a fixed value x the value of j with S[j] ≡ x mod n
is no longer unique. There may be more than one possible j or there may be
no possible j. That make the counting more difficult and is the reason for the
O( 1

n2 ) terms.
We show now how to compute the probability

P (S[j] + S[k] ≡ i mod n | S[j] ≡ x mod n)

for the case i 6≡ 2x mod n.
First we count the number of possible internal (reduced modulo n). We may

choose j (n possibilities) which determines S[j] ≡ x mod n and then we may
choose the remaining n − 1 states of the S-box (nn−1 possibilities).

Now we count the number of states with S[j] + S[k] ≡ i mod n as in The-
orem 1 we write the equivalently as S[k] + k ≡ S[i] + i mod n.

We distinguish three cases:
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1. i = k
Then S[i] ≡ k − S[j] ≡ i − x 6≡ x mod n (remember that we assumed
i 6≡ 2x mod n).

We may choose now j 6= i (n − 1 possibilities) which determines S[j] ≡
x mod n. For the remaining n − 2 entries of the S-box we have nn−2

possibilities.

2. i 6= k and k 6≡ 2x mod n
There are n − 2 possible values for k. After we have chosen k the values
S[i] ≡ k−x 6≡ x mod n and S[k] = S[i]+i−k = i−x 6= x are determined.

We may choose now j 6= i, k (n − 2 possibilities) and the remaining n− 3
S-box entries (nn−3 possibilities).

3. i 6= k and k ≡ 2x mod n
Then S[i] ≡ k − x ≡ x mod n and S[k] ≡ x + i − k 6≡ x mod n.

We may now chose either j = i, which leaves nn−2 possibilities for the
remaining S-box or we choose j 6= i, k (n − 2 possibilities) which leaves
nn−3 possibilities for the remaining S-box.

Altogether we have

(n−1)nn−2 +(n−2)(n−2)nn−3+nn−2 +(n−2)nn−3 = 2nn−1−3nn−2 +2nn−3

internal states with S[j] + S[k] ≡ i mod n and S[j] ≡ x mod n.
This proves

P (S[j] + S[k] ≡ i mod n | S[j] ≡ x mod n) =
2

n
−

3

n2
+

2

n3

for i 6≡ 2x mod n.
The other probabilities can computed the same way. Since the attack of the

NGG generator is not the primary goal of this article we omit the details. �

That the probability is now 2
n + O( 1

n2 ) instead of 2
n is irrelevant for our

attack. We can therefore study the outputs of the NGG-Generator modulo n
and apply any of attacks described in the previous sections. This helps us to
reconstruct the values of the key modulo n.

But if all key values are known modulo n, we know always the exact value
of i, j and k. This means we are able to identify the output of the NGG pseudo
random generator as S-box value. This reconstructs the S-box and with the
S-box we know the key.

Similarly the FMS-attack can be adapted to the NGG generator.
Our study shows that NGG generator fails against the same attacks as the

RC4 algorithm, but it introduces potentially additionally weaknesses. Person-
ally I see a problem with line 11 of algorithm 4 that enforces S[k] ≡ k mod n.
For that reasons I can not recommend the NGG generator.

17



7.4 RC4A

An other interesting variant of the RC4 algorithm is the RC4A algorithm de-
scribed in [10]. The idea is to use two S-boxes in ”parallel” to obtain a stronger
algorithm.

Algorithm 5 RC4A pseudo random generator

1: {initialization}
2: i := 0
3: j1 := 0 j2 := 0
4: {generate pseudo random sequence}
5: loop

6: i := (i + 1) mod n
7: j1 := (j1 + S1[i]) mod n
8: Swap S1[i] and S1[j]
9: k2 := (S1[i] + S1[j]) mod n

10: print S2[k2]
11: j2 := (j2 + S2[i]) mod n
12: Swap S2[i] and S2[j]
13: k1 := (S2[i] + S2[j]) mod n
14: print S1[k1]
15: end loop

In each step we produce two output bytes. Since k2 is computed from the
values of the first S-box and both S-boxes are independent there cannot be a
correlation between S1[j1] and S2[k2]. But there is still an analogon to Theo-
rem 1.

Theorem 3

Assume that a permutations have the same probability and S1 and S2 are in-

dependent. Then:

P (S1[j1] + S1[k1] + S2[j2] + S2[k2] ≡ 2i mod n) =
1

n − 1
. (13)

Proof

The proof is very similar to the proof of Theorem 1.
We use k2 ≡ S1[i] + S1[j1] mod n and k1 ≡ S2[i] + S2[j2] mod n to write

S1[j1] + S1[k1] + S2[j2] + S2[k2] ≡ 2i mod n

as
(k1 + S1[k1]) + (k2 + S2[k2]) ≡ (i + S1[i]) + (i + S2[i]) mod n .

Now we count the states that satisfies this condition. For this we have to
distinguish several cases:
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1. k1 = k2 = i
In this case we may choose S1 and S2 with out any restriction. Thus we
have (n!)2 possible combinations.

2. k1 = i, k2 6= i
In this case we may choose S1 as we want (n! possibilities). Next we may
choose k2 (n−1 possibilities), than we have to choose S2[i] (n possibilities)
which determines S2[k2]. After all we may choose the remaining part of S2

((n− 2)! possibilities). All together we have (n!)((n− 1)n(n− 2)!) = (n!)2

possibilities in this case. (Compare this with Theorem 1).

3. k1 6= i, k2 = i
This is analog to the previous case (n!)2 possibilities.

4. k1 6= i, k2 6= i
We distinguish two subcases:

(a) k1 + S[k1] ≡ i + S1[i] mod n
This is equivalent to k2 + S[k2] ≡ i + S2[i] mod n.

We may count the number of possibilities for both S-boxes separately.
As in Theorem 1 or in the two cases above we find (n!)2 possibilities
in this case.

(b) k1 + S[k1] 6≡ i + S1[i] mod n
In this case we may first choose k1 (n possibilities) and S1[i] (n
possibilities). Now we choose S1[k1] (n−2 possibilities, since S1[k1] 6=
S1[i] and k1 + S[k1] 6≡ i + S1[i] mod n by assumption). There are
(n − 2)! possibilities left to choose the remaining part of S1.

By assumption k2 6= i. Further more (k1 +S[k1])+k2 6≡ (i+S1[i])+ i
mod n, since S2[k2] 6= S2[i]. Thus we have n−2 possibilities to choose
k2. Now we may choose S2[i] (n possibilities), which determines
S2[k2]. For the remaining part of S2 we have (n − 2)! possibilities.

This makes [(n− 1)n(n− 2)(n− 2)!][(n− 2)n(n− 2)!] possibilities in
this case.

Altogether there are n · n!(n − 2)! internal states with

(k1 + S1[k1]) + (k2 + S2[k2]) ≡ (i + S1[i]) + (i + S2[i]) mod n .

Since the total number of possible internal states is (n · n!)2 this proves the
theorem. �

There are also analogons to the equations (2), (3) and (4) of Theorem 1.
But since this paper has not the primary goal to analyze RC4A we omit these
details.

The correlation of Theorem 3 is weaker than the one proved in Theorem 1,
but it is still strong enough to be exploited in an attack.

Theorem 3 allows us to estimate S1[j1] + S2[j2] mod n. If we are able to
use this information to obtain the main key, depends on the key scheduling
algorithm.
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Suppose we have two independent sub keys K1 and K2 and use these sub key
with normal RC4 key scheduling algorithm (Algorithm 1) to initialize S1 and
S2 respectively. Then we can use Theorem 3 and the technique of our 1-round
attack to compute a relation between K1 and K2. This reduces the effective
key length by 1

2 .
If we generate K2 form K1 by a simple RC4 algorithm as suggested in

[10]. We can mount the following attack. Assume that the initialization vector
precedes the main key. With a chosen initialization vector we may enforce that
first two bytes of K2 depend in a simple way from the first two bytes of the main
key. (Use initialization vectors similar to the one used in the FMS-attack.) Now
we analyze the first two out-put bytes of the RC4A pseudo random generator
with Theorem 3. S1[j] depends only on the first two bytes of K1. These bytes
are part of the initialization vector which are know to the attack. Thus the
attack may compute S2[j2] from the observed values. This byte depends only
on the first two bytes of main key. The attack follows now the pattern of 1-round
attack described in section 4.

For the attack described above we need more information about the initial-
ization vector than for the FMS-attack, further more the correlation is rather
weak. This means that this attack needs an unrealistic high number of observed
sessions.

As a conclusion of this subsection we may say: RC4A has weaknesses that
are very similar to the weaknesses of RC4, but the consequences are not so
dramatic.

8 Conclusion

The 1-round attack described in this article needs in opposite to the FMS-attack
no weak initialization vectors. It is therefore very difficult to avoid that kind
of attack and the attack succeeds with a fewer number of observed sessions.
In the cases the initialization vector precedes the main key the FMS-attack
still remains a very attractive variant, because its simple structure. Especially
one needs only the first pseudo random byte to do the FMS-attack. If the
initialization vector follows the main key the new attack is clearly better.

The 2-round attack proves that it is possible exploit the weakness of the key
scheduling, even after many steps of the pseudo random generator. The attack
needs more work than the 1-round attack but remains still in a practicable
region.

If one wants to use RC4 he should follow the advice given by I. Mironov [8]
and discard the output of the first 12 rounds.

An other interesting idea is to compute the session key from the main key
and the initialization vector via a hash function [1]. The hashing would avoid
all attacks similar to the FMS-attack or the attacks described in this work. On
the other hand we must implement a cryptographic hash function with would
eliminate one of the main advantages of RC4, the quick and simple implemen-
tation.
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[4] J. Dj. Golić. Linear statistical weakness of alleged RC4 keystream genera-
tor. In Advances in Cryptology – EUROCRYPT ’97, volume 1233 of LNCS,
pages 226–238, Berlin, 1997. Springer.
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